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Fluorescence News

Enhanced and Localized Multiphoton Excited Fluorescence
Near Metallic Silver Islands: Metallic Islands Can
Increase Probe Photostability
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fluorescence; enhanced photostability.

Recently we reported that close-proximity metallic mum enhancement in the incident electric field has been
calculated to be a factor of 140 near appropriately sizedsilver islands or colloids can alter the radiative decay
metallic ellipsoids [8]. Because the incident intensity israte, Gm , and/or excitation rate, Em , of fluorophores [1–5].
the square of the incident field strength for a 1-photonWe have shown that the quantum yield of low quantum
process, enhancements in excitation rates by a factor ofyield fluorophores can be increased, with a maximum
up to 2*104 are possible. It is this phenomenon that onepredicted increase of 1/Q0, (Q0-quantum yield in absence
can typically attribute to increases in observed apparentof metal), whereas significant increases in emission inten-
quantum yields near metallic particles to greater thansity from high quantum yield species, in the absence of
unity. However, a much more dramatic enhancement isany non-radiative rate modifications, can only be ob-
possible for multiphoton excitation. For a 2-photonserved by substantial increases in Em . Complimentary to
absorption process the rate of excitation is proportionalour previous results and interpretations, we can now
to the square of the incident intensity. This suggests thatreport that enhanced and localized multiphoton excitation
2-photon excitation could be enhanced by a factor of 3.8*of rhodamine B (RhB) fluorescence occurs near metallic
108. Such an enhancement in the excitation rate is thoughtsilver islands.
to provide selective excitation of fluorophores near toThe increase in fluorescence emission intensity for
metal islands or colloids, even if the solution contains aRhB molecules adjacent to metallic silver islands (Fig.
considerable concentration of other fluorophores that1) is accompanied by a reduction in lifetime, compared
could undergo 2-photon excitation at the same wave-to that observed using 1-photon excitation. Given the
length, but are more distant from the metals surface (Fig.high quantum yield of RhB (Q0 5 0.48), these results
3). This interpretation is borne out by the fact that givencan be explained by the metallic particles significantly
the overwhelming excess of high quantum yield RhB inincreasing the Em of the RhB molecules. Moreover, given
this sample geometry ('96% of solution is too distantthe sample geometry (Fig. 2) and the absence of any
for any fluorophore–metal effect), the fluorescence life-notable increase in emission intensity using 1-photon
time is still shorter than that typically observed for bulkexcitation, as well the fact that the 1-photon mean lifetime
solution RhB in the absence of metal (Fig. 4).remained essentially unchanged both in the presence and

In our opinion, enhanced and localized multiphotonabsence of silver, suggests that enhanced 2-photon excita-
excitation by metal particles may have numerous applica-tion is localized to regions in close proximity to the
tions in the biochemical and biological applications ofsilver islands.
fluorescence. For example:It is informative to discuss the nature of this

enhanced and localized excitation. In addition to metallic ● More Generally: The preferential enhanced exci-
particles and/or colloids modifying a fluorophore’s radia- tation of fluorophores in close proximity to metal-
tive decay rate, they are also known to increase excitation lic islands or colloids even in the presence of high

concentrations of other emitting species (see Fig.rates by concentrating the incident light [6,7]. The maxi-
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Fig. 3. Preferential multiphoton excitation of fluorophores in close
proximity to metal, in the presence of free fluorophore, Fl.

excite cellular autofluorescence. If the enhance-
ment by the metallic particles is significantly
large, one could imagine their use in tissues where
scattering reduces the peak intensity of excita-
tion pulses.

Fig. 1. (Top) Emission spectra of 1024 M RhB between silver island
films (S) with 2-photon excitation at 852 nm (2) from a Tsunami mode-
locked Ti:sapphire laser, 80 MHz repetition rate, 90 fs pulse and about
0.5 W average power. Also shown are the emission spectra observed
from uncoated quartz slides (Q), and silver islands alone without RhB.
(Bottom) RhB between silver islands, S(2), or quartz plates, Q(. . .),
with 1-photon excitation at 490 nm.

3). Even further enhancements may be possible
by using low Q0 species.

● Specifically: By directing metallic colloids to a
cell membrane by the presence of a covalently
bound antibody, one may be able to specifically

Fig. 2. Sample geometry. Two silver islanded quartz plates sandwich
'1 mm RhB solution. Given that metal-fluorophore interactions are

Fig. 4. Frequency domain intensity decay of RhB between quartz slidesthought to extend some 200 Å into the solution, in this sample geometry
only '4% of RhB molecules are within this active region. This suggests (top) and silver island films (bottom) with 2-photon excitation at 852

nm observed at 580 nm.that the true enhancement effect in Fig. 1 is at least 25 times higher.
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In the many applications of fluorescence, the photo- The use of metallic structures to enhance multipho-
ton excitation has already been considered in aperturelessstability of fluorophores is an important consideration.

This is particularly true in single molecule detection, near-field scanning optical microscopy [10,11]; however,
to the best of our knowledge, multiphoton excitation haswhere it has been estimated that approximately 1000

photons can be observed from a highly stable fluorophore not been reported near metallic colloids or islands.
such as a Rhodamine prior to photodecomposition [9].
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